JCP 2014 Vol.9(12): 2809-2815 ISSN: 1796-203X
doi: 10.4304/jcp.9.12.2809-2815
doi: 10.4304/jcp.9.12.2809-2815
C-Regularization Support Vector Machine for Seed Geometric Features Evaluation
Xi Jinju1 and Tan Wenxue2
1School of Computer Science, Hunan University of Arts and Science. Changde, 415000, China
2College of Computer Science, Beijing University of Technology,Beijing, 100022, China
Abstract—People have been utilizing Support Vector Machine (SVM) to tackle the problem of data mining and machine learning related to many practicalities. However, for some training set of multi-group which presents unbalance of the number of samples, a classifier model trained by C-SVM always results in some unbalanced error-rates. Grounded upon analysis of Lagrange multiplier, the paper proposes the Misleading-SV, outer boundary of class, learning-error-rate and other concepts, and formulates the C-Regularization SVM and a method for regularizing slack constant C. Taking aim at wheat seed geometric property evaluation for quality gradation, the project crew develops some test experiments for algorithm validation. The contour analysis reveals the proposed scheme can effectively grade wheat seeds by their geometric features with an precision rate of 96%. Especially against some prior algorithms, result of contrast experiment demonstrates that for the subject with sparse samples, the method for regularizing slack constant can lower the macro classification error-rate of classifier obviously.
Index Terms—C-Regularization, Misleading SV, Intelligent Evaluation, Unbalance, SVM.
2College of Computer Science, Beijing University of Technology,Beijing, 100022, China
Abstract—People have been utilizing Support Vector Machine (SVM) to tackle the problem of data mining and machine learning related to many practicalities. However, for some training set of multi-group which presents unbalance of the number of samples, a classifier model trained by C-SVM always results in some unbalanced error-rates. Grounded upon analysis of Lagrange multiplier, the paper proposes the Misleading-SV, outer boundary of class, learning-error-rate and other concepts, and formulates the C-Regularization SVM and a method for regularizing slack constant C. Taking aim at wheat seed geometric property evaluation for quality gradation, the project crew develops some test experiments for algorithm validation. The contour analysis reveals the proposed scheme can effectively grade wheat seeds by their geometric features with an precision rate of 96%. Especially against some prior algorithms, result of contrast experiment demonstrates that for the subject with sparse samples, the method for regularizing slack constant can lower the macro classification error-rate of classifier obviously.
Index Terms—C-Regularization, Misleading SV, Intelligent Evaluation, Unbalance, SVM.
Cite: Xi Jinju and Tan Wenxue, "C-Regularization Support Vector Machine for Seed Geometric Features Evaluation," Journal of Computers vol. 9, no. 12, pp. 2809-2815, 2014.
General Information
ISSN: 1796-203X
Abbreviated Title: J.Comput.
Frequency: Bimonthly
Abbreviated Title: J.Comput.
Frequency: Bimonthly
Editor-in-Chief: Prof. Liansheng Tan
Executive Editor: Ms. Nina Lee
Abstracting/ Indexing: DBLP, EBSCO, ProQuest, INSPEC, ULRICH's Periodicals Directory, WorldCat,etc
E-mail: jcp@iap.org
-
Nov 14, 2019 News!
Vol 14, No 11 has been published with online version [Click]
-
Mar 20, 2020 News!
Vol 15, No 2 has been published with online version [Click]
-
Dec 16, 2019 News!
Vol 14, No 12 has been published with online version [Click]
-
Sep 16, 2019 News!
Vol 14, No 9 has been published with online version [Click]
-
Aug 16, 2019 News!
Vol 14, No 8 has been published with online version [Click]
- Read more>>