JCP 2012 Vol.7(6): 1413-1420 ISSN: 1796-203X
doi: 10.4304/jcp.7.6.1413-1420
doi: 10.4304/jcp.7.6.1413-1420
Radar Emitter Signal Recognition Based on EMD and Neural Network
Bin Zhu1, 2, Wei-dong Jin1
1School of Electrical Engineering, Southwest Jiaotong University, Chengdu, China
2School of Electron Engineering, Yangtze Normal University, Chongqing, China
Abstract—Radar emitter signal (RES) recognition is the important content in radar reconnaissance and signal processing. In order to study the problem of RES recognition, and to improve the RES recognition rate of the electronic warfare equipment, the empirical mode decomposition (EMD) theory and wavelet packet (WP) are introduced into RES feature extraction. A new RES recognition method is proposed based on WP, EMD and neural network (NN). It uses wavelet packet to finish decomposition, de-noising and reconstruction of the RES. Then obtain the intrinsic mode function (IMF) through EMD, which can embody the characteristics of the RES. The energy of each IMF are calculated and normalized, which would be regarded as the feature vector. By constructing back propagation neural network (BPNN) classifier and redial basis function neural network (RBFNN) classifier, it realizes the RES recognition finally. Experiment results show that the RES recognition method based on WP, EMD and NN is an effective recognition method, which can achieve satisfying correct recognition rate in a larger signal to noise ratio, and has certain reference value in follow-up in-depth study.
Index Terms—Radar emitter, signal recognition, empirical mode decomposition, neural network, wavelet packet.
2School of Electron Engineering, Yangtze Normal University, Chongqing, China
Abstract—Radar emitter signal (RES) recognition is the important content in radar reconnaissance and signal processing. In order to study the problem of RES recognition, and to improve the RES recognition rate of the electronic warfare equipment, the empirical mode decomposition (EMD) theory and wavelet packet (WP) are introduced into RES feature extraction. A new RES recognition method is proposed based on WP, EMD and neural network (NN). It uses wavelet packet to finish decomposition, de-noising and reconstruction of the RES. Then obtain the intrinsic mode function (IMF) through EMD, which can embody the characteristics of the RES. The energy of each IMF are calculated and normalized, which would be regarded as the feature vector. By constructing back propagation neural network (BPNN) classifier and redial basis function neural network (RBFNN) classifier, it realizes the RES recognition finally. Experiment results show that the RES recognition method based on WP, EMD and NN is an effective recognition method, which can achieve satisfying correct recognition rate in a larger signal to noise ratio, and has certain reference value in follow-up in-depth study.
Index Terms—Radar emitter, signal recognition, empirical mode decomposition, neural network, wavelet packet.
Cite: Bin Zhu, Wei-dong Jin, "Radar Emitter Signal Recognition Based on EMD and Neural Network," Journal of Computers vol. 7, no. 6, pp. 1413-1420, 2012.
General Information
ISSN: 1796-203X
Abbreviated Title: J.Comput.
Frequency: Bimonthly
Abbreviated Title: J.Comput.
Frequency: Bimonthly
Editor-in-Chief: Prof. Liansheng Tan
Executive Editor: Ms. Nina Lee
Abstracting/ Indexing: DBLP, EBSCO, ProQuest, INSPEC, ULRICH's Periodicals Directory, WorldCat,etc
E-mail: jcp@iap.org
-
Nov 14, 2019 News!
Vol 14, No 11 has been published with online version [Click]
-
Mar 20, 2020 News!
Vol 15, No 2 has been published with online version [Click]
-
Dec 16, 2019 News!
Vol 14, No 12 has been published with online version [Click]
-
Sep 16, 2019 News!
Vol 14, No 9 has been published with online version [Click]
-
Aug 16, 2019 News!
Vol 14, No 8 has been published with online version [Click]
- Read more>>